The Effect of Dietary Nitrate on Enteric Methane Emissions and Methaemoglobin in Ruminants: a Meta-Analysis

Jolien Veneman, John Newbold, Hink Perdok, Jamie Newbold

February 2016
Introduction

NITRATE

- Nitrate acts as alternative hydrogen sink when being reduced to ammonia (Ungerfeld and Kohn, 2006)

\[
\text{NO}_3^- + \text{H}_2 \rightarrow \text{NO}_2^- + \text{H}_2\text{O}
\]

\[
\text{NO}_2^- + 3\cdot\text{H}_2 + 2\cdot\text{H}^+ \rightarrow \text{NH}_4^+ + 2\cdot\text{H}_2\text{O}
\]

- Both reactions have a greater negative ΔG value than methane formation, through the reduction of CO₂, therefore nitrate reduction would be favoured over methanogenesis as a hydrogen sink

- If nitrate is completely reduced to ammonia then 100 g nitrate could ‘compete’ with 25.8 g of methane (stoichiometric potential)

- When nitrite forms, and is not quickly reduced to ammonia, it can be absorbed across the rumen wall to bind to Heamoglobin, forming Metheamoglobin (MetHb). This can lead to reduced performance or in extreme situations death at high levels of MetHb
Introduction

META-ANALYSIS

• Several newly published studies on nitrate supplementation and methane emissions
 • Not included in Lee and Beauchemin (Dec., 2014) → 11 comparisons.

Aim

• Study the effect of nitrate supplementation on methane emissions (g/kg DMI) → Calculate efficacy of nitrate
• The effect of nitrate on MetHb%
• Which moderators influence this effect
Materials and Methods;

Data selection

STUDIES

• 18 papers

Total comparisons between a control and nitrate treatment

• 27 for Methane yield, 21 for MetHb%

Inclusion criteria;

• Within each experiment, control and nitrate diets contained equal concentrations of crude protein.

• Methane yield was expressed as methane emissions per kg dry matter intake (DMI) and MetHb as % of total haemoglobin.
Materials and methods; analysis

METAFOR PACKAGE IN R (VIECHTBOUWER, 2010)

• Mean difference (MD) → (Treatment – Control) can be used when units (and range) are the same

• Using Random effects model to test overall effect of nitrate;
 • \(\theta_i = \mu + u_i \)

• Mixed effects model to test effect of moderators;
 • \(\theta_i = \beta_0 + \beta_1 x_{1p} + \ldots + \beta_p x_{ip} + u_i \),

• Each moderator was first tested individually and included if \(P<0.10 \) to construct final model

• Animal type (beef cattle, dairy cattle or sheep; class)
• Dose (g NO3/kg DM; continuous)
• Feeding management (ad lib or fixed; class)
• Treatment duration (weeks; continuous)
• Treatment type (coated or plain Ca Nitrate; class)
Results

METHB (N=21)

Overall significant increase in MetHb% by 1.2% units ($\pm 0.35SE$; $P<0.001$)

Significant effect for feeding management

Restricted fed (n=11)

- MetHb +2.4% ($\pm 0.47SE$; $P<0.001$)
- Max values increased at dose >18 g NO3/kg DM

Ad libitum fed (n=10)

- MetHb +0.4% ($\pm 0.31SE$; $P=0.17$)
- Max MetHb level did not exceeded 7.2%
Results

METHANE (G/KG DMI; N=27)

Overall significant reduction in methane yield (-3.6 g/kg DMI; ±0.33SE; P<0.001)

Significant **effect of dose**

- nitrate decreases methane by **0.21g** (±0.035SE; P<0.001) per g nitrate

Animal type (beef cattle, dairy cattle or sheep)

Feeding management (fixed or ad lib)
Results

METHANE (G/KG DMI; N=27)

→ 20.8 gram per 100 gram instead of 25.8 gram = 80.6% efficacy

No apparent decrease in methane decreasing efficacy with increasing nitrate dose

Animal type (beef cattle, dairy cattle or sheep)
Feeding management (fixed or ad lib)
Results

DMI (N=39)

Small overall negative effect -0.12kg (SE±0.06:P<0.003)

- No significant effect of dose, animal type, coating or feeding management.
- Significant effect of exp. Duration with decrease in DMI with longer experiments

Animal type (beef cattle, dairy cattle or sheep)
Feeding management (fixed or ad lib)
Results

PH (N=11)

- Overall increase in pH with 0.06 points (SE±0.003; P=0.003)
- Significant effect of animal (P=0.0148) with sheep and beef cattle showing a significant increase, but not in dairy cattle.

Animal type (beef cattle, dairy cattle or sheep)
Feeding management (fixed or ad lib)
Results

TOTAL VFA
(n=11)
• Overall no effect of nitrate on VFA
• Tendency (P=0.093) for effect of animal type with only sheep showing a significant increase in tVFA

Animal type (beef cattle, dairy cattle or sheep)
Feeding management (fixed or ad lib)
Results

ACETATE %

(n=15)

• Overall nitrate increases Acetate by 2.46% (P<0.001)

• Effect of nitrate or coated nitrate, with coated nitrate not increasing Ac%

• Effect of feeding management, with restricted feeding increasing Ac% more

Animal type (beef cattle, dairy cattle or sheep)
Feeding management (fixed or ad lib)
Results

PROPIONATE %

(n=15)

• Overall nitrate decreases propionate wby 2.17% s (P<0.001)

• Effect of type of nitrate, with coated nitrate not decreasing Pr%

Animal type (beef cattle, dairy cattle or sheep)
Feeding management (fixed or ad lib)
Results

N-BUTYRATE %

(n=15)

- Overall no effect of nitrate on Butyrate % (P=0.94)
- No other moderators had an effect (e.g. dose, duration)

Animal type (beef cattle, dairy cattle or sheep)
Feeding management (fixed or ad lib)
Results

AMMONIA

(n=14)

- Overall nitrate showed a tendency to decrease ammonia by 1.1 mmol/L (P=0.08)

- Significant effect of experiment duration (P<0.001) with ammonia decreasing with increasing duration

Animal type (beef cattle, dairy cattle or sheep)

Feeding management (fixed or ad lib)
Conclusion

META-ANALYSIS

MetHb%

• When nitrate-fed ruminants are limit-fed (e.g. to 95% of *ad libitum* intake) mean MetHb is increased significantly by 2.4% compared to the control.

• MetHb% is not different from the control when cattle or sheep are fed *ad libitum*

• Risk of increased MetHb% is higher in limit fed animals

Methane Yield

• Nitrate reduced methane yield in a linear dose response manner (80.6% efficacy)
Acknowledgements

- ANIMAL CHANGE
- IBERS Aberystwyth University
- Cargill Animal Nutrition
Data (appendix)

INCLUDED IN THE META-ANALYSIS

<table>
<thead>
<tr>
<th>REF-ID</th>
<th>YEAR</th>
<th>COMPA-RISON</th>
<th>COUNTRY</th>
<th>ANIMAL</th>
<th>FIXED or AD LIB</th>
<th>TREATMENT</th>
<th>DURATION IN WEEKS</th>
<th>MAX* DOSE</th>
<th>n</th>
<th>CH4</th>
<th>DMI</th>
<th>RUMEN</th>
<th>METHB</th>
</tr>
</thead>
<tbody>
<tr>
<td>deRaphélisSoissan 01</td>
<td>2014</td>
<td>1</td>
<td>Australia</td>
<td>Sheep</td>
<td>Fixed</td>
<td>Nitrate</td>
<td>10</td>
<td>20</td>
<td>7</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>El-Zaiat 01</td>
<td>2014</td>
<td>1</td>
<td>Brazil</td>
<td>Sheep</td>
<td>Ad lib</td>
<td>Coated nitrate</td>
<td>13.1</td>
<td>27</td>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Guyader 01</td>
<td>2015</td>
<td>1</td>
<td>France</td>
<td>Dairy</td>
<td>Fixed</td>
<td>Nitrate</td>
<td>5</td>
<td>23</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Guyader 02</td>
<td>2015</td>
<td>1</td>
<td>France</td>
<td>Dairy</td>
<td>Fixed</td>
<td>Nitrate</td>
<td>5</td>
<td>23</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hulshof 01</td>
<td>2012</td>
<td>1</td>
<td>Brazil</td>
<td>Beef</td>
<td>Ad lib</td>
<td>Nitrate</td>
<td>3.3</td>
<td>22</td>
<td>14</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Lee 01</td>
<td>2015</td>
<td>3</td>
<td>Canada</td>
<td>Beef</td>
<td>Ad lib</td>
<td>Coated nitrate</td>
<td>4</td>
<td>23</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Lee 02</td>
<td>2015</td>
<td>3</td>
<td>Canada</td>
<td>Beef</td>
<td>Ad lib</td>
<td>Coated nitrate</td>
<td>4</td>
<td>23</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Li 01</td>
<td>2012</td>
<td>1</td>
<td>Australia</td>
<td>Sheep</td>
<td>Both</td>
<td>Nitrate</td>
<td>7.7</td>
<td>19</td>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Li 02</td>
<td>2013</td>
<td>1</td>
<td>Australia</td>
<td>Sheep</td>
<td>Both</td>
<td>Nitrate</td>
<td>9.3</td>
<td>19</td>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Newbold 01</td>
<td>2014</td>
<td>5</td>
<td>USA</td>
<td>Beef</td>
<td>Fixed</td>
<td>Nitrate</td>
<td>6.1</td>
<td>28</td>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Newbold 01</td>
<td>2014</td>
<td>5</td>
<td>Brazil</td>
<td>Beef</td>
<td>Ad lib</td>
<td>Nitrate</td>
<td>15.7</td>
<td>24</td>
<td>5</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nolan 01</td>
<td>2010</td>
<td>1</td>
<td>Australia</td>
<td>Sheep</td>
<td>Fixed</td>
<td>Nitrate</td>
<td>3.0</td>
<td>25</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Troy 01</td>
<td>2015</td>
<td>4</td>
<td>UK</td>
<td>Beef</td>
<td>Ad lib</td>
<td>Nitrate</td>
<td>24</td>
<td>22</td>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>vanZijderveld 01</td>
<td>2010</td>
<td>1</td>
<td>Netherlands</td>
<td>Sheep</td>
<td>Fixed</td>
<td>Nitrate</td>
<td>4.0</td>
<td>26</td>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>vanZijderveld 04</td>
<td>2011</td>
<td>1</td>
<td>Netherlands</td>
<td>Dairy</td>
<td>Fixed</td>
<td>Nitrate</td>
<td>12.7</td>
<td>21</td>
<td>10</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Velazco 01</td>
<td>2013</td>
<td>1</td>
<td>Australia</td>
<td>Beef</td>
<td>Ad lib</td>
<td>Nitrate</td>
<td>6.0</td>
<td>19</td>
<td>11</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Veneman 01</td>
<td>2015</td>
<td>1</td>
<td>New Zealand</td>
<td>Dairy</td>
<td>Both</td>
<td>Nitrate</td>
<td>4.6</td>
<td>20</td>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Veneman 01</td>
<td>2015</td>
<td>1</td>
<td>UK</td>
<td>Dairy</td>
<td>Ad lib</td>
<td>Nitrate</td>
<td>5.0</td>
<td>20</td>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Olijhoek 01</td>
<td>2014</td>
<td>3</td>
<td>Denmark</td>
<td>Dairy</td>
<td>Ad lib</td>
<td>Nitrate</td>
<td>4.0</td>
<td>21</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

* formulated dose of nitrate in g/kg feed DM