Mixing dicyandiamide (DCD) with cattle feeds: an effective method to deliver a nitrification inhibitor to urine patches

E.P. Minet1, S.F. Ledgard2, G. Lanigan1, J.B. Murphy1, D. Hennessy3, E. Lewis3, P. Forrestal1, K.G. Richards1

1 Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland; 2 AgResearch, Ruakura Research Centre, New Zealand; 3 Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland

eddy.minet@teagasc.ie
This research is a collaborative partnership funded by

Background information

- Grazed pastures are an important source of N losses (\(\text{N}_2\text{O}, \text{N}_2, \text{NH}_3, \text{NO}_3^-\))
- Broadcast application of nitrification inhibitor dicyandiamide (DCD) reduce \(\text{NO}_3^-\) leaching and \(\text{N}_2\text{O}\) losses
- N losses occur mainly from urine patches (<20% of grazed area annually or <5% per grazing event)
- Potential to deliver DCD directly to grazing cows to target urine patches
Objective

To Investigate the effect of mixing DCD with several types of cattle feed as a practical method for targeted delivery of DCD to urine patches during grazing

(Assumption = different feed types might impact rumen metabolism and DCD stability)
This research is a collaborative partnership funded by Materials and methods (1)

- Latin square design: 3 herds of 5 non-lactating dairy cows daily fed DCD mixed with one of 3 feeds (grass silage, maize silage or barley concentrate), 3 periods of 21 days, 1 period = pre-conditioning (4d), day grazing simulation & urine patch sampling (5d), resting (12d), then rotation
- Average feed intake: 3 kg dry matter cow-1 d-1, DCD intake: 30 g cow-1 d-1 (≈ 50 mg DCD/kg live weight/d)

Barley concentrate
Grass silage
Maize silage
This research is a collaborative partnership funded by Materials and methods (2)

- Non-overlapping urine patches marked (n = 292) and sampled (10 cm)
- Soil extracted (2M KCl), concentrations of DCD, urea-N, and TAN (NH₃ + NH₄⁺)
- Live-weight and body condition

Response variables: Equivalent application rates of DCD (kg DCD/ha) and urea-N+TAN (kg N/ha)
Result 1: effect of feed on DCD appl. rate

No feed effect \((P = 0.4) \) on average DCD application rate

= all 3 feeds similarly efficient at delivering DCD to urine patches
Result 2: histogram of DCD appl. rates in urine patches

- 80% of values ≥ 10 kg DCD ha⁻¹
- Large range: 0.2 – 195 kg DCD ha⁻¹
- Median: 24.7 kg DCD ha⁻¹
Result 3: DCD vs. N excreted

DCD and urea-N+TAN appl. rates highly correlated ($P < 0.0001$) = DCD excretion higher where N excretion is higher

Potentially a more efficient N mitigation strategy than broadcast application because:
- higher N losses where higher N loading AND higher DCD rates more efficient than low DCD rates
- longer DCD residence time in urine patches
Result 4: live-weight & body condition scores

- Live-weight higher at the end of the experiment than at the start in all treatments (P < 0.0001)
- No significant difference in body condition score (P > 0.05)
Conclusions

- **Low DCD dosage to cows = high DCD excretion rates in urine patches**
- **All 3 feeds equally effective** at delivering DCD to urine patches
- DCD excretion rate **matched** N excretion rate
- Practical, potentially cheaper and more effective mitigation measure
Acknowledgements

- **Funding was provided by the New Zealand Government** in support of the objectives of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases. (Any view or opinion expressed does not necessarily represent the view of the Global Research Alliance or any of its member countries). **Disclaimer**: **DCD has been withdrawn from use on farms in New Zealand and its use is now restricted to research.** Protocols to ensure that DCD use in research does not enter the food chain are supported by soil and plant testing for DCD residues.

- We thank all Teagasc lab staff and summer students for their help.